Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0302026, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683853

RESUMO

The current robot path planning methods only use global or local methods, which is difficult to meet the real-time and integrity requirements, and can not avoid dynamic obstacles. Based on this, this study will use the improved A-star global planning algorithm to design a hybrid robot obstacle avoidance path planning algorithm that integrates sliding window local planning methods to solve related problems. Specifically, A-star is optimized by evaluation function, sub node selection mode and path smoothness, and fuzzy control is introduced to optimize the sliding window algorithm. The study conducted algorithm validation on the TurtleBot3 mobile robot, with data sourced from experimental data from a certain college. The results showed that hybrid algorithm enabled the planned path to effectively navigate around dynamic obstacles and reach the target point accurately. When compared with traditional methods, path length reduced by 9.6%, path planning time decreased by 29% with an approximate 26.7% increase in the average speed of the robot. Compared with the traditional methods, the research algorithm has greatly improved in avoiding dynamic obstacles, path planning efficiency, model adaptability and so on, which has important value for relevant research. It can be seen that the algorithm proposed in the study has performance advantages, demonstrating the effectiveness and advantages of robot path planning, and can provide reference for robot obstacle avoidance optimization. Research can complete tasks for robots in practical environments, which has certain reference value for the research of robots in path planning and the development of path obstacle avoidance planning.


Assuntos
Algoritmos , Robótica , Robótica/métodos , Lógica Fuzzy , Modelos Teóricos
2.
Phys Chem Chem Phys ; 25(40): 27373-27379, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37791950

RESUMO

Three novel hexagonal Si-C-N structures, namely SiC3N3, SiC7N6, and SiC13N14, were constructed on the basis of the α-Si3N4 crystal structure. The stability of the three structures is demonstrated by analyzing their elastic constants and phonon dispersion spectra and by calculating their formation energies. The calculated band structures and partial densities of states suggest that the SiC3N3 and SiC7N6 structures possess hole conductivity. The electron orbital analyses indicate that the SiC3N3 and SiC7N6 crystals possess three-dimensional and one-dimensional conductivity, respectively. SiC13N14 is a semiconductor with a wide bandgap of 4.39 eV. Based on two different hardness models and indentation shear stress calculations, the Vickers hardness values of SiC3N3, SiC7N6, and SiC13N14 are estimated to be 28.04/28.45/16.18 GPa, 31.17/34.19/20.24 GPa, and 40.60/41.59/36.40 GPa. This result indicates that SiC3N3 and SiC7N6 are conductive hard materials while SiC13N14 is a quasi superhard material.

3.
Phys Chem Chem Phys ; 22(40): 22918-22922, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32832962

RESUMO

Ternary boron-carbon-nitrogen (B-C-N) compounds are considered to possess hardness comparable to diamond and thermal stability comparable to c-BN. Explorations for desirable B-C-N phases have been continuous. However, the nonconductive properties of most B-C-N compounds narrow the applications of these compounds. Herein, we propose a sp2-sp3 hybridized phase of t-B2C3N2, which consists of diamond-like BC blocks connected with single N-N bonds. Elastic constants and phonon dispersion curves confirm that t-B2C3N2 is mechanically and dynamically stable. The structure processes 2D metallicity in a strong 3D network. Furthermore, hardness and electron-phonon calculations reveal that t-B2C3N2 is superhard and superconductive with a superconducting critical temperature reaching 2.3 K.

4.
ACS Omega ; 5(9): 4620-4625, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32175508

RESUMO

High-pressure phase transitions of AlB2-type transition-metal diborides (TMB2; TM = Zr, Sc, Ti, Nb, and Y) were systematically investigated using first-principles calculations. Upon subjecting to pressure, these TMB2 compounds underwent universal phase transitions from an AlB2-type to a new high-pressure phase tP6 structure. The analysis of the atomistic mechanism suggests that the tP6 phases result from atomic layer folds of the AlB2-type parent phases under pressure. Stability studies indicate that the tP6-structured ZrB2, ScB2, and NbB2 are stable and may be observed under high pressure and the tP6-structured TiB2 phase may be recovered at ambient pressure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...